If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4f^2+18f=0
a = 4; b = 18; c = 0;
Δ = b2-4ac
Δ = 182-4·4·0
Δ = 324
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$f_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$f_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{324}=18$$f_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-18}{2*4}=\frac{-36}{8} =-4+1/2 $$f_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+18}{2*4}=\frac{0}{8} =0 $
| 143=11n+11 | | x+(x*0.05)=14000 | | X+5x-38=0 | | 3(x-9)-10×5=x | | 3(x-9)-10.5=x | | X+170=y+130 | | x+(x*0.05)=10000 | | 6x+24=12+14 | | w/3+13=15 | | -3x+1.5=-3 | | x/4=11/4 | | 2x/7+5=15 | | 2j-8=4+3j+2 | | 4f-f=(10-4)+2f | | 4(x+7)-2=-5(x-6) | | -8+4+k=-2+2k+4 | | 3-1+m=6+3m | | 10x-3x+x=24 | | T+2+t=-8+4t | | 14000+50x=20000+40x | | x3-17x+73=0 | | 3x+6=2x+4+x+4 | | N(x)=7x | | –4(8–3x)=6x–8 | | 7x+5(x-8)=-4(3x*5)+12 | | 7(x-4)=3x+5 | | 80-2(4+3m)=3m | | -4+2x=-16-11x | | 7x+5(x-8)=-4(3x5)+12 | | 8-(4+3m)/5=3m/10 | | 15x=-4x | | –3(6–2x)=4x+12 |